Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Front Immunol ; 12: 793197, 2021.
Article in English | MEDLINE | ID: covidwho-1674334

ABSTRACT

Background: Despite similar rates of infection, adults and children have markedly different morbidity and mortality related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Compared to adults, children have infrequent severe manifestations of acute infection but are uniquely at risk for the rare and often severe Multisystem Inflammatory Syndrome in Children (MIS-C) following infection. We hypothesized that these differences in presentation are related to differences in the magnitude and/or antigen specificity of SARS-CoV-2-specific T cell (CST) responses between adults and children. We therefore set out to measure the CST response in convalescent adults versus children with and without MIS-C following SARS-CoV-2 infection. Methods: CSTs were expanded from blood collected from convalescent children and adults post SARS-CoV-2 infection and evaluated by intracellular flow cytometry, surface markers, and cytokine production following stimulation with SARS-CoV-2-specific peptides. Presence of serum/plasma antibody to spike and nucleocapsid was measured using the luciferase immunoprecipitation systems (LIPS) assay. Findings: Twenty-six of 27 MIS-C patients, 7 of 8 non-MIS-C convalescent children, and 13 of 14 adults were seropositive for spike and nucleocapsid antibody. CST responses in MIS-C patients were significantly higher than children with uncomplicated SARS-CoV-2 infection, but weaker than CST responses in convalescent adults. Interpretation: Age-related differences in the magnitude of CST responses suggest differing post-infectious immunity to SARS-CoV-2 in children compared to adults post uncomplicated infection. Children with MIS-C have CST responses that are stronger than children with uncomplicated SARS-CoV-2 infection and weaker than convalescent adults, despite near uniform seropositivity.


Subject(s)
COVID-19/complications , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Antibodies, Viral/immunology , COVID-19/immunology , Child , Child, Preschool , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Infant , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology
2.
J Clin Immunol ; 41(6): 1146-1153, 2021 08.
Article in English | MEDLINE | ID: covidwho-1384523

ABSTRACT

Immunocompromised patients, including those with inborn errors of immunity (IEI), may be at increased risk for severe or prolonged infections with SARS-CoV-2 (Zhu et al. N Engl J Med. 382:727-33, 2020; Guan et al. 2020; Minotti et al. J Infect. 81:e61-6, 2020). While antibody and T cell responses to SARS-CoV-2 structural proteins are well described in healthy convalescent donors, adaptive humoral and cellular immunity has not yet been characterized in patients with antibody deficiency (Grifoni et al. Cell. 181:1489-1501 e1415, 2020; Burbelo et al. 2020; Long et al. Nat Med. 26:845-8, 2020; Braun et al. 2020). Herein, we describe the clinical course, antibody, and T cell responses to SARS-CoV-2 structural proteins in a cohort of adult and pediatric patients with antibody deficiencies (n = 5) and controls (related and unrelated) infected with SARS-CoV-2. Five patients within the same family (3 with antibody deficiency, 2 immunocompetent controls) showed antibody responses to nucleocapsid and spike proteins, as well as SARS-CoV-2 specific T cell immunity at days 65-84 from onset of symptoms. No significant difference was identified between immunocompromised patients and controls. Two additional unrelated, adult patients with common variable immune deficiency were assessed. One did not show antibody response, but both demonstrated SARS-CoV-2-specific T cell immunity when evaluated 33 and 76 days, respectively, following SARS-CoV-2 diagnosis. This report is the first to show robust T cell activity and humoral immunity against SARS-CoV-2 structural proteins in some patients with antibody deficiency. Given the reliance on spike protein in most candidate vaccines (Folegatti et al. Lancet. 396:467-78, 2020; Jackson et al. N Engl J Med. 383:1920-31, 2020), the responses are encouraging. Additional studies will be needed to further define the timing of onset of immunity, longevity of the immune response, and variability of response in immunocompromised patients.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Common Variable Immunodeficiency/immunology , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Adolescent , Adult , Carrier State , Cells, Cultured , Child , Female , Humans , Immunity, Humoral , Lymphocyte Activation , Male , Middle Aged , Mutation/genetics , Pedigree , Transmembrane Activator and CAML Interactor Protein/genetics , Exome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL